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TrFT: From compact to discrete (O(2) example)
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Classical tensor tools: from compact to discrete

Naturally discrete for lattice models (Pontryagin, Peter-Weyl) .
Fits the need of quantum computing.
“Hard integrals" are done exactly.
Connects smoothly Lagrangian and Hamiltonian.
Checkings with importance sampling (MC and worm algorithms).
Exact blocking but RG equations requires truncations (TRG).
TRG: effective tensors are local (supersedes effective
Hamiltonian).
Symmetries are characterized by tensor selection rules and
preserved by truncations (YM, PRD 100 014506).
Noether theorem: for each symmetry, there is a corresponding
tensor redundancy; noise-robust implementation of Gauss’s law
(YM, arXiv:2003.10986, PRD 102 014506).
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TRG blocking for 2D spin models (graphically)

Exact form of the partition function: Z ∝ Tr
∏

i T (i)
xx ′yy ′ .

Tr mean contractions over the indices attached to links.
Reproduces the closed paths (“worms") of the HT expansion.
TRG blocking separates the degrees of freedom inside the block which
are integrated over, from those kept to communicate with the
neighboring blocks. Graphically :
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No sign problems.
Computing time goes like log(V ) if we can control the truncations.
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Checking with exact results for 2D Ising
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Figure: Energy and specific heat of the two dimensional Ising model on a
32× 32 lattice. Dcut = 32. Graph by Ryo Sakai.
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Compact Abelian Higgs Model (CAHM)

ZCAHM =
∏

x

∫ π

−π

dϕx

2π

∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge−Smatter ,

Sgauge = βpl.
∑

x ,µ<ν

(1− cos(Ax ,µ + Ax+µ̂,ν − Ax+ν̂,µ − Ax ,ν)),

Smatter = βl.
∑
x ,µ

(1− cos(ϕx+µ̂ − ϕx + Ax ,µ)).

Gauged version of the O(2) model: the global ϕ shift becomes local

ϕ′x = ϕx + αx

Local changes in Smatter are compensated by

A′x ,µ = Ax ,µ − (αx+µ̂ − αx ),

which leaves Sgauge invariant.
The matter fields can be decoupled by simply setting βl. = 0 (we are
left with the pure gauge U(1) lattice model)
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Fourier expansions and field integrations

Links: eβl. cos(ϕx+µ̂−ϕx+Ax,µ) =
+∞∑

nx,µ=−∞
einx,µ(ϕx+µ̂−ϕx+Ax,µ)Inx,µ(βl.) ,

ϕ integration provides the O(2) selection rule:∑
µ

[−nx ,µ + nx−µ̂,µ] = 0. (1)

Plaquettes: eβpl. cos(Ax,µ+Ax+µ̂,ν−Ax+ν̂,µ−Ax,ν) =
+∞∑

mx,µ,ν=−∞
eimx,µ,ν(Ax,µ+Ax+µ̂,ν−Ax+ν̂,µ−Ax,ν)Imx,µ,ν (βpl.),

Ax ,µ integration provides the selection rule:

∑
ν>µ

[mx ,µ,ν −mx−ν̂,µ,ν ] +
∑
ν<µ

[−mx ,ν,µ + mx−ν̂,ν,µ] + nx ,µ = 0. (2)

Note 1: (2) implies (1) (discrete version of ∂µ∂νFµν = ∂µJµ = 0.)
Note 2: Gauge quant. numbers m determine matter nx ,µ({m})
Note 3: In the unitary gauge, ϕ disappears
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Selection rules are discrete Maxwell equations

The integers associated with time plaquette are discrete electric fields
ex ,j ≡ mx ,j,D, with j = 1, . . . ,D − 1. In the pure gauge limit, the
selection rule for µ = D reads

D−1∑
j=1

(ex ,j − ex−ĵ,j) = 0.

This is a discrete form of Gauss’s law in the pure gauge limit ∇ ·E = 0.

For D = 3, bx ≡ mx ,1,2 and the pure gauge selection rule for for µ = 1
and 2 are

ex ,1 − ex−τ̂ ,1 = −(bx − bx−2̂),
ex ,2 − ex−τ̂ ,2 = (bx − bx−1̂). (1)

These are a discrete version of the D = 3 Euclidean pure gauge
Maxwell’s equations with B = F 12

∂1B = ∂τE2, ∂2B = −∂τE1,

Yannick Meurice (U. of Iowa) Discrete aspects of continuous symmetries BNL, October 19, 2020 9 / 45



No discrete homogeneous Maxwell’s equations

D = 3: no discrete version of

∂µε
µνσFνσ = 0,

which can also be written Ḃ = −∇× E. Examples of legal
configurations violating the discrete version can be constructed.
For D = 4, we can introduce

bx ,j ≡ εjklmx ,k ,l ,

and obtain a discrete version of

∂τE = −∇× B, (3)

Again there is no discrete version of the homogeneous equations for
the dual field strength Ḃ = −∇× E and ∇ · B = 0. Note that the sign
in (3) is different in Euclidean and Minkowskian spaces. It can be
traced to the minus sign in the Minkowskian Klein-Gordon equation.
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Assembly of the A (links, blue ) and B (plaquette, red)
tensors for D = 2 (Figures by Ryo Sakai)
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Assembly of the A (links, blue ) and B (plaquette, red)
tensors for D = 3 (Figures by Ryo Sakai)
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Explicit form of the A and B tensors

The four legs attached to a B-tensor on a given plaquette (x , µ, ν)
carry a single value m.

B(x ,µ,ν)
m1m2m3m4

=

{
tm1(βpl.), if all mi = m
0, otherwise.

tn(β) ≡ In(β)

I0(β)
'

{
1− n2

2β +O(1/β2), for β →∞
βn

2nn! +O(βn+2), for β → 0
.

These are assembled (traced) together with “A-tensors" attached to
links with 2(D − 1) legs orthogonal to the link

A(x ,µ)
m1...m2(D−1)

= tnx,µ(βl.)δnx,µ,nx,µ({m}).

Partition function with PBC:

Z = (e−βpl. I0(βpl.))VD(D−1)/2(e−βl. I0(βl.))VD

× Tr
∏

l.

A(l.)
m1,...m2(D−1)

∏
pl.

B(pl.)
m1m2m3m4

, (2)
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Gauge redundancy

In presence of (bosonic) matter, the matter quantum numbers are
completely determined by the gauge quantum numbers nx ,µ({m}) and
the gauge selection rules are then satisfied as expressed in

A(x ,µ)
m1...m2(D−1)

= tnx,µ(βl.)δnx,µ,nx,µ({m})

The O(2) selection rule can be omitted because it is automatically
satisfied. Equivalently, ϕ can be gauged away.

In the pure gauge limit, divergenceless conditions equivalent to
discrete Maxwell’s equations need to be imposed at each link.
However they are not completely independent. Out of the 2D
Kronecker delta functions associated to the A tensors attached to the
links coming out of a site, one of them is a consequence of the 2D − 1
others (see YM, PRD 102). Equivalently, we can gauge away one of
the links coming out of the site.
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Gauge redundancy (pure gauge)

if Gauss’s law is satisfied for a A-tensor attached to the ((x, τ),D) time
link which is assembled with the divergenceless A-tensors attached to
the 2(D − 1) spatial links ((x, τ + 1), j) and ((x− ĵ , τ + 1), j) with
j = 1, . . . ,D − 1, then the A-tensors attached to the time link
((x, τ + 1),D) is forced to obey Gauss’s law because of a discrete
version of ∂τ (∇ · E) = 0. This is illustrated for D = 3 for in-out
assignments discussed in YM, PRD 102.
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Backup “blackboard" (selection rules and redundancy)

Yannick Meurice (U. of Iowa) Discrete aspects of continuous symmetries BNL, October 19, 2020 16 / 45



Backup “blackboard" (no homogeneous Maxwell)
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Discrete Gauss theorem (global in-out conventions)

Figure: Example of flux cancelations in D = 2. The total flux in and out the
upside-down L-shaped domain is +1.
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Boundary conditions (graph by Ryo Sakai)

Figure: Assembling the translation invariant tensor with PBC (left), or using
new tensors at the boundary for OBC (right). Tensors are assumed to be put
on each lattice site.
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Reformulation of Noether’s theorem

Redundant selection rules are in one-to-one correspondence with
irrelevant integrations.
We can skip the integrations that produce redundant selection
rules and replace these integrated fields by arbitrary values. This
is exactly what gauge-fixing does.
The argument can be extended to global symmetries. In the case
of the O(2) model in-out assignments for the 2D legs of the
divergenceless tensor attached to sites imply that one of the
divergenceless conditions is a consequence of all the other ones.
This requires the whole tensor network to be isolated. The O(2)
symmetry allows us to fix one of the ϕ fields to an arbitrary value.
The redundancy argument extends to discrete Zq subgroups of
U(1) where the divergenceless condition is expressed modulo q
Noether’s theorem can be expressed in the tensor formulation
context as: for each symmetry, there is a corresponding tensor
redundancy. This applies to global, local, continuous and discrete
Abelian symmetries.
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Transfer Matrix

We can organize the trace in the expression of Z by assembling “time
layers" corresponding to “magnetic" time slices and “electric" slices
half-way between the magnetic time slices. This construction singles
out a time direction as for the Hamiltonian treatment.

Z = TrTNτ ,

with Nτ the number of sites in the temporal direction.

T ≡ (e−βpl. I0(βpl.))(V/Nτ )D(D−1)/2(e−βl. I0(βl.))(V/Nτ )D

×T1/2
E TMT1/2

E , (3)

For D = 3, this construction can be visualized as a “lasagna".
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Electric layer

B-tensors on space-time plaquettes labelled by e(x,τ),j with a fixed τ

A-tensors attached to their time links with 2(D − 1) legs all in spatial
directions. This is illustrated for D = 3 below.
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Electric layer (Figures by Ryo Sakai)

Figure: Electric layer of the transfer matrix for D = 3 between two time slices
(left) and “from above" (right).
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Magnetic layer (Figures by Ryo Sakai)

Figure: magnetic layer of the transfer matrix for D = 3 in a time slice (top) and
“from above" (bottom).
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Electric matrix elements

We can think of these two types of layers as matrices connecting
electric states

|{e}〉 = ⊗x,j |ex,j〉.

This is a natural choice because the B-tensors on the space-time
plaquettes have two legs in the time direction. In this basis, the electric
layer can be expressed as a diagonal matrix TE with matrix elements

〈{e′}|TE |{e}〉 = δ{e},{e′}TE ({e}),

where TE ({e}) can be written with some implicit notations as a traced
product of A tensors on time links with B tensors on space-time
plaquettes

TE ({e}) = Tr
∏

time l.

A(l.)
m1,...m2(D−1)

∏
sp.−time pl.

B(pl.)(e).
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Magnetic matrix elements

Similarly, we can define a magnetic matrix TM with matrix elements

〈{e}|TM |{e′}〉

with the indices e and e′ carried by the time legs of the A-tensors.

〈{e′}|TM |{e}〉 = Tr
∏

sp. l.

A(l.)
m1,...m2(D−1)

(e,e′)
∏

sp.−sp. pl.

B(pl.).

All the traces are over the spatial legs of the tensors, while the time
legs carry the the indices e and e′.
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Hamiltonian limit

The crucial features of TE is that it only involves time links and
plaquettes having one direction in time. We introduce separate βτ
couplings for TE and use redefinitions in terms of the time lattice
spacing aτ :

βτpl. =
1

aτg2
pl.
, and βτ l. =

1
aτg2

l.
.

Given the weak coupling (large β) behavior of tn(β) given in Eq. (13),
at first order in aτ , we get “rotor" energies (1/2)g2

pl.m
2 for the

plaquettes and (1/2)g2
l.n

2 for the links.
On the other hand, TM only involves space links and space-space
plaquettes and we redefine

βs pl. = aτJpl., and βs l. = aτhl..

T = I− aτH +O(a2
τ )
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Following Banks, Kogut, Susskind 76, we define êx,j and Ûx,j such that

êx,j |ex,j〉 = ex,j |ex,j〉
Ûx,j |ex,j〉 = |ex,j + 1〉 (4)

Û†x,j |ex,j〉 = |ex,j − 1〉,

H =
1
2

g2
pl.

∑
x,j

(êx,j)
2

+
1
2

g2
l.(
∑

x

(
∑

j

(êx,j − êx−ĵ,j)))2

− hl.
∑
x,j

(Ûx,j + h.c.) (5)

− Jpl.
∑

x,j<k

(Ûx,jÛx+ĵ,k Û†
x+k̂ ,j

Û†x,k + h.c.).

We have used
∑D−1

j=1 (ex ,j − ex−ĵ,j) = nx ,D to eliminate nx ,D.
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Pure gauge: a robust way to implement Gauss’s law

We introduce a new set of quantum numbers cx,j,k , associated with the
plaquettes of a D − 1 lattice, and unrelated to the existing gauge
quantum numbers.

ex ,j =
∑
k>j

[−cx ,j,k + cx−k̂ ,j,k ]

+
∑
k<j

[cx ,k ,j − cx−k̂ ,k ,j ], (6)

and Gauss’s law is automatically satisfied. This is a discrete version of

Ek = ∂jC jk ,

For an arbitrary antisymmetric tensor C jk with indices j , k running from
1 to D − 1. It is possible to introduce dimension-dependent “magnetic"
notations such as G = εklCkl for D = 3 and Gj = εjklCkl for D = 4.
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For a D = 3 pure gauge theory we can visualize the electric Hilbert
space as a D = 2 O(2) model being on a plane between two time
slices. We can further imagine the auxilliary variables located in the
middle of the plaquettes of this “horizontal" plane, which means in the
center of the D = 3 cubes of the original lattice. This is equivalent to
the dual formulation discussed by J. Unmuth-Yockey PRD 99, 074502
(2019).
For D = 4, this reparametrization is a discrete equivalent of setting

E = ∇×G.

This guarantees Gauss’s law, but ∇× E is in general non-zero so we
don’t use this trick for conventional electrostatics because one of the
homogeneous Maxwell’s equation (Ḃ = −∇× E) implies that the
magnetic field changes with time.
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This method is optimal for D = 3, because it reduces the
dimensionality of the Hilbert space to one index per site (cx ,1,2) rather
than 2 (ex,1 and ex,2). For D = 4, there are 3 indices per sites in both
case, because cx ,j,k is only defined up to a gradient. When the Hilbert
space is parametrized with the new quantum numbers, the relation
between the ex ,j and cx ,j,k is linear. We can study the effect of
changing one of the cx ,j,k by ±1. For instance, ∆cx ,1,2 = 1 generates
the following changes:

∆ex ,1 = −1, ∆ex+2̂,1 = 1, ∆ex ,2 = 1, ∆ex+1̂,2 = −1.

This change can be visualized as an electric field circulating clockwise
on a plaquette in the 1-2 plane and it clearly satisfies Gauss’s law. The
changes correspond to the U†U†UU term in the Kogut-Susskind
Hamiltonian. For D = 3, we can efficiently replace the term with two
raising and two lowering operators by a term with a single raising or
lowering operator (J. Unmuth-Yockey PRD 99). The construction can
be repeated for any pair of directions in higher dimensions, but the
cx ,j,k have some redundancy. For D = 4, see YM PRD 102
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Exercise

Consider a U(1) pure gauge theory in 2+1 dimensions on a 3 by 3
spatial lattice (4 plaquettes) with OBC. Calculate the 12 electric
quantum numbers on the links as a function of the 4 cx,1,2 ≡ cx .
Check that Gauss’s law is satisfied at the 9 sites.
Solution: Use

ex,1 = −cx + cx−2̂, and ex,2 = cx − cx−1̂,

with cx is non-zero inside the four plaquettes and zero outside.

Figure: Illustration of the solution for the divergenceless electric field (red on
the links) in terms of the cx field (blue in the plaquettes).
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Equations of motion for ϕ

For the scalar fields, we first introduce the notation

dx ,µ ≡ ϕx+µ̂ − ϕx + Ax ,µ

which approximates the covariant derivative of ϕ. The equation of
motion

∂S/∂ϕx = βl.
∑
µ

[− sin(dx ,µ) + sin(dx−µ̂,µ)]

= 0. (7)

On the other hand the integration with respect to ϕx implies∑
µ

[−nx ,µ + nx−µ̂,µ] = 0.

Yannick Meurice (U. of Iowa) Discrete aspects of continuous symmetries BNL, October 19, 2020 33 / 45



Equations of motion for the gauge fields

fx ,µ,ν ≡ Ax ,µ + Ax+µ̂,ν − Ax+ν̂,µ − Ax ,ν .

As in the continuum they are gauge invariant.
With these notations,

∂S/∂Ax ,µ = βpl.
∑
ν>µ

[sin(fx ,µ,ν)− sin(fx−ν̂,µ,ν)]

+βpl.
∑
ν<µ

[− sin(fx ,ν,µ) + sin(fx−ν̂,ν,µ)]

+βl. sin(dx ,µ)
= 0. (8)

On the other hand, the integration over Ax ,µ yields the selection rule∑
ν>µ

[mx ,µ,ν −mx−ν̂,µ,ν ] +
∑
ν<µ

[−mx ,ν,µ + mx−ν̂,ν,µ] + nx ,µ = 0.
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Topological solutions and semi-classical
approximations

solvable cases: the D = 1 O(2) spin model and the D = 2 pure gauge
U(1) model.
For the D = 1 O(2) spin model with PBC and Nτ sites, the equations of
motion: sin(ϕx+1̂ − ϕx ) takes the same value on every link. These
equations have many solutions and we will focus our attention on the
ones that can be interpreted as continuous topological solutions in the
continuum limit for PBC. If we impose that ϕx+1̂ − ϕx is a small
constant, we can obtain a solution that meets this requirement. Given
any choice for the constant, we can then “integrate" the equations:
starting with some ϕ0, we obtain ϕ1, and so on until, due to PBC, we
get an independent value for ϕ0 which should be consistent with the
initial value modulo an integer multiple of 2π.

Yannick Meurice (U. of Iowa) Discrete aspects of continuous symmetries BNL, October 19, 2020 35 / 45



This approximately corresponds to a smooth mapping of the circle into
itself provided that the successive changes can be made arbitrarily
small. This can be accomplished by requiring that for all links

ϕx+1̂ − ϕx =
2π
Nτ

`,

for a given integer `. By taking, Nτ large with fixed ` we obtain a
solution which can be interpreted as a topological solution with winding
number `. In the limit `� Nτ , these solutions have classical action

S` '
β

2
(
2π
Nτ

`)2Nτ .
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We can calculate the quadratic fluctuations with respect to this
solution. We can first use the global O(2) symmetry to set ϕ0 = 0.
Other values of ϕ0 are taken into account by performing the integration
over ϕ0 which with our normalization of the measure yields a factor 1.
By construction, the linear fluctuations vanish because the first
derivatives are zero and all we need to calculate are the quadratic
fluctuations

∆ =
Nτ−1∏
x=1

∫ π

−π

dϕx

2π
e−Squad.

` ,

with
Squad .
` =

β

2
cos(

2π
Nτ

`)(ϕ2
1 + (ϕ2 − ϕ1)2 + · · ·+ ϕ2

Nτ−1)

Following the standard quadratic path integral procedure, we find

∆ = N−1/2
τ (2πβ cos(

2π
Nτ

`))−(Nτ−1)/2.
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We can now attempt to re-sum the topological contributions. This is
delicate because we have assumed `� Nτ , however if β is large
enough, the terms with large ` are exponentially suppressed. In the
same spirit, we will ignore the ` dependence of ∆ and use the Poisson
summation formula

∞∑
`=−∞

e−
B
2 `

2
=

√
2π
B

∞∑
n=−∞

e−
(2π)2

2B n2
,

with B = β(2π)2/Nτ . Putting everything together, we get a
semi-classical approximation of the partition function in the large β limit

Z ' (2πβ)−Nτ/2
∞∑

n=−∞
(e−

n2
2β )Nτ .
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We now consider the solutions of the discrete current conservation.
The solution is that nx ,1 should be constant. With PBC, this implies the
exact expression:

Z =
∞∑

n=−∞
(e−βIn(β))Nτ ,

which can be compared to the semi-classical expression. Using the
large β approximations

e−βI0(β) ' 1√
2πβ

(1 +O(1/β)),

and the Bessel function approximate behavior in the same limit, we
see the approximate correspondence between the two expressions.
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A similar construction can be carried for the D = 2 pure gauge U(1)
model with PBC. We consider a rectangular Ns × Nτ lattice. The
equation of motion requires that sin(fx ,1,2) is constant. Following the
analogy with the O(2) case, we start with

fx ,1,2 ≡ Ax ,1 + Ax+1̂,2 − Ax+2̂,1 − Ax ,2 = δ,

with δ a constant to be determined with PBC. We can gauge fix the
temporal links with a given spatial coordinate x1 to the identity with the
exception of one time layer. For definiteness, we take this layer of
nontrivial time links to be between τ = Nτ − 1 and Nτ which is
identified with 0 due to PBC. The space links with a given spatial
coordinate, which can be visualized as a vertical ladder can be treated
as the indices of a D = 1 O(2) model changing by −δ at each step until
we get to the “last" rung and temporal links are present. The constancy
of the “last" plaquette requires that

A(x1+1,Nτ−1),2 − A(x1,Nτ−1),2 = Nτδ.
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Iterating in the spatial direction, we obtain PBC in the spatial direction
provided that

δ =
2π

NsNτ
`.

The action for this topological solution is

SU(1)
` ' β

2
(

2π
NsNτ

`)2NsNτ .

Note that we could have obtained another periodic solution by setting
all the time links to 1 and imposing PBC in time for Ns independent
D = 1 O(2) models, however, the action for these configurations is
larger by a factor N2

s .
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The quadratic fluctuations can be calculated as in the O(2) case but
with extra complications due to the special time layer. Keeping track of
all the 2π factors and using Poisson summation for the winding
numbers, we obtain the semi-classical approximation

Z U(1) ' (2πβ)−NsNτ/2
∞∑

n=−∞
(e−

n2
2β )NsNτ ,

which agrees with the exact expression at leading order.
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As a test of the semi-classical picture we can calculate the topological
susceptibility. For this purpose we first calculate

Z (β, θ) =
∏
x ,µ

∫ π

−π

dAx ,µ

2π
e−Sgauge−iθQ,

with the topological charge Q defined as

Q =
1

2π

∑
x

sin(Ax ,1 + Ax+1̂,2 − Ax+2̂,1 − Ax ,2).

The topological susceptibility is defined as

χ = − d2

dθ2 ln(Z )|θ=0.

Exact resummation (Gattringer et al. PRD 92, 114508, 2015)

Z (β, θ) =
∞∑

n=−∞
[ e−βIn(

√
β2 − (

θ

2π
)2)

×(
β − θ

2π

β + θ
2π

)n/2]NsNτ . (9)
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If χ is dominated by configurations corresponding to winding number
±1 where |Q| ' 1 in the continuum limit, we have the large-β estimate

χ ' (0)21 + (1)2 exp(−β
2

(2π)2(1)2

NsNτ
)

+ (−1)2 exp(−β
2

(2π)2

NsNτ
(−1)2). (10)

Fig. 7 shows that this estimate is reasonably good when β is large
enough.
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Figure: Logarithm of the topological susceptibility using the exact formula for
Ns = Nτ = 8 expanded up to order 5 (dots) and the semi-classical
approximation Eq. (10) (continuous line).

Yannick Meurice (U. of Iowa) Discrete aspects of continuous symmetries BNL, October 19, 2020 44 / 45



Conclusions

QC/QIS in HEP and NP: we need big goals with many
intermediate steps.
Tensor Field Theory is a generic tool to discretize path integral
formulations of lattice model with compact variables.
TRG: exact blocking, a friendly competitor to QC.
Truncations respect symmetries.
TRG: gauge-invariant approach for the quantum simulation of
gauge models.
Noether theorem: for each symmetry, there is a corresponding
tensor redundancy.
Noise-robust economical implementation of Gauss’s law for pure
gauge models.
Need for quantum simulations and computations dedicated to
theoretical physics
Thanks for listening!
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